
Run-time verification of web applications
Roberto Tonino

May 21st, 2025

Contents
1 Introduction 2

2 Definitions 2

3 Automata 2
3.1 Single-display applications model . 3
3.2 Multi-display applications . 3

4 Extension of the automata model 4
4.1 Extended single-display automaton . 5
4.2 Extended multi-display automaton . 6

5 LTL and the In operator 6

6 Evaluation of the approach 6
6.1 Theoretical evaluation . 6
6.2 Implementation and empirical evaluation . 7

7 Conclusions 8

1

1 Introduction
This report summarizes the paper “A formal approach for run-time verification of web applications
using scope-extended LTL”.The authors present a solution that uses finite automata, LTL and the model
checker Spin to formally verify properties on web applications.

The paper begins explaining how to build the automata that are used to model the behaviour of the
user in a web application. After that, the authors focus on LTL, presenting a new operator that allows
formula writers to define an LTL formula scoped to a subset of states. Eventually, the authors conclude
the paper showing empirical results, together with a prototype of a tool to apply all the steps described
in the paper.

2 Definitions
Some definitions are now presented, which will help the reader understand the technical jargon dis-
cussed in the paper:

• Web Application Under Test (WAUT): the web application taken in consideration in a particular
definition, discussion, etc…

• request: string l that represents a web request performed by a WAUT

• response: tuple ⟨u, c, I , L, V ⟩ which represents the response that the web server sent to the
WAUT

– u = l

– c represents the status code of the response [2]
– I = “target” attribute of the forms contained in the response
– L = URLs of the links contained in the response
– V = <v1, . . . , vk> vector where vi is the valuation of the page attribute i

• browsing session: denoted RRS, it is a recorded sequence of request-response exchanges that a
user performs when visiting a WAUT

• local browsing session: denoted RRS as well, it is a recorded sequence of request-response ex-
changes that a user performs in a single browser window or frame

3 Automata
In order to represent the behaviour of a user in a web application, the authors propose a communicating-
automata-based model of the WAUT. An automaton represents the “journey” that a user takes when
utilizing the WAUT: this journey is identified by the links that the user clicks or the forms that they
submit, and the pages that are loaded subsequentially. For an easier understanding, the authors present
an incremental approach to the communicating-automata model. A single-display application model is
first proposed, then to be followed by a multi-display application model.

2

3.1 Single-display applications model
The automaton that represents a single-display application is built as follows.

Procedure 1. Convert a browsing session of a single-display application into an automaton.

1. the inactive state s0 = ⟨u0, c0, I0, L0, V0⟩ is defined;

2. the set of states is defined by the set of responses, a response being ⟨ui, ci, Ii, Li, Vi⟩

(a) when only the links in two responses are different, the responses are mapped to the same
state. The authors provide a proof that this compression does not alter the recorded be-
haviour of the WAUT;

3. the alphabet is built from the union of the requests (Req), the URIs associated with links in the
observed responses (Γ), and the actions that correspond to the unexplored forms in the observed
responses ∆. Σ = Req ∪ Γ ∪∆;

4. there is a transition (si, li+1, si+1) from state si to state si+1 if there is a link or a form action
that goes from the page represented by si to the page represented by si+1;

5. for each unexplored link l ∈ Li or form a ∈ Ii, the automaton has a transition from the state
representing the page ⟨ui, ci, Ii, Li, Vi⟩ to a so-called trap state t ∈ T .

The construction allows to define deduced links: they are links that are not visited during the brows-
ing session, but are contained in one or more of the responses of the browsing session. Deduced links
extend the automaton, making it a little more complete, enhancing property verification and improving
reachability of certain states.

In Fig. 1 it is possible to see an example of a constructed session automaton. The links “URL1”,
“URL2”, and “URL3” are unexplored links which transition to the trap state. The transitions from s2 to s1,
from s3 to s2, and from s4 to s1 represent deduced links. Notice that deduced links are undistinguishable
from regular links in the automaton representation.

3.2 Multi-display applications
The model presented in Section 3.1 is extended to handle multi-window and multi-frame applications.
Such applications intrinsically possess concurrency because of how browsers load them: in the case of
a web page with several frames, it is not possible to know in advance what will be the loading order of
the pages. The authors note how it is theoretically possible to represent multi-display as single-display
applications, but it is discouraged because it is cumbersome to represent multiple, parallel behaviours in
a single automaton. Some of the definitions are extended from the ones of single-display applications:

• response: ⟨u, c, I , F , L, V ⟩ with F being a set of frames in the page. The target t is defined; if no
target is present t = ε. Additional changes are:

– ⟨l, t⟩ ∈ L

– ⟨a, t⟩ ∈ I

– ⟨f ,b⟩ ∈ F

• the requests are nowmade of the link as before, with the addition of the referer r (link fromwhich
the request started) and the target t. They are denoted as ⟨r,l,t⟩

3

Figure 1: Example of a session automaton.

The procedure for building a single-display automaton is extended to build a communicating au-
tomata model.

Procedure 2. Convert a browsing session of amulti-display application into a communicating automata
model.

1. a browsing session is split into a local browsing session (RRS1, . . . , RRSk), one for each window
and frame;

2. convert each local browsing session RRSi into an automaton;

(a) use Procedure 1 to convert RRSi to an automaton;
(b) the alphabetΣi is extendedwith the source pages of the frames (src attribute),Σi := Σi∪Φi;
(c) the case in which the user clicks on a link or submits a form while a frame is loading is

handled by adding a transition from each state of the local automaton to the response state;
(d) each unexplored link ⟨ri,li,ti⟩ ∈ Γi is mapped to a loop in the state it targets (self-loop);

3. create the communicating automata via the parallel composition operator, denoted A1 || A2. The
compositions of multiple automata is denoted A1 || · · · || Ak

A detailed explanation is presented in [3].

4 Extension of the automata model
In the communicating automata model described above, it is possible to characterize transient and sta-
ble states. Transient states represent situations where a multi-frame page is loaded, and the browser

4

performs the requests for the frames in that page without user intervention.
The authors propose an extended automata model by adding a context variable to each state of each

automaton. The context variable represents the number of frames that have to be loaded when in a
certain state. If the context variable equals 0, the state is denoted stable, i.e. there are no more frames
to load. Otherwise, the state is denoted transient.

In Fig. 2 an example of communicating automata is presented. The automaton in part (d) is not in its
extended version, but it is possible to denote the transient and stable states already. The transient states
are all the states that have an outgoing transition fi, i.e. a transition that represents a frame loaded by the
browser without user intevention. The stable states are therefore (s0, u0, w0), (s1, u1, w1), (s1, u2, w1),
(s2, u0, w0).

Figure 2: Example of communicating automata.

Each component automaton gets a context variable in each state. When all the component automata
are in a state where the context variable is equal to 0, then the global state is considered stable.

4.1 Extended single-display automaton
The definition of an Extended Automaton for single-display applications follows:

Procedure 3. An automaton Ai is extended to an automaton Qi as follows.

1. the set of states Si, alphabet Σi and initial state s0i are unchanged;

2. xi is the context variable of Qi, x0i is the context variable’s initial state;

3. for each transition (s, a, s′) ∈ Ti, s, s′ ∈ Si, a ∈ Σi:

(a) if s = s′ and a ∈ Σd
i , then (s, a, xi := xi − 1, s) is a transition in Qi, where xi := xi − 1 is

the update of the transition; or
(b) (s, a, xi := |init(s′)∩Σd

i |, s′) is a transition inQi, where xi := |init(s′)∩Σd
i | is the update

of the transition.

The designated set of transitions Σd
i is the set of those transitions who cause the automaton to pass

through a transient state. In the case of browser sessions, the elements belonging to this set are the
browser triggered events.

5

4.2 Extended multi-display automaton
The definition of a communicating extended automata model follows:

1. build the single-display automata;

2. apply Procedure 3 to get extended automata;

3. the set of designated transitions Σd
i is the set of frames of the browsing session;

4. xi is initially set to 0;

5. at each state si, xi is the number of browser triggered events enabled in si;

6. each automaton is unfolded (transformed to its equivalent non-extended version);

7. the unfolded automata are composed using the composition operator.

The communicating extended automata model built as such is called stable if all its xi variables are
set to 0. Otherwise, it is called transient.

5 LTL and the In operator
To ease the definition of properties in a setting with automata possessing transient and stable states,
the authors introduce new operators to increase the succintness of LTL. The operators allow to specify
LTL properties over a subset of the state space offered by the system in consideration. For example,
operators can be used to specify properties that hold only on the main page, or only in a subset of the
pages of the application.

Over propositional logic expressions, the ℑ-scope operator is introduced. The authors re-define
LTL’s ¬, ∧, ∨ U, X, F, and G operators to use ℑ scopes, defining ¬ℑ, ∧ℑ, ∨ℑ, Uℑ, Xℑ, Fℑ, and Gℑ.
The scope is in itself a logical formula. A formula that is satisifed in a ℑ scope is not said to be satisfied
outside of the scope.

Over logical formulas, instead, the In operator is introduced, which makes use of the ℑ-scope
operator. The full specification is detailed in [5].

An example of a simplication allowed by the In operator is the following.

Example 1.

G(((¬Home∧¬Shopping) → (Promotions = 0))∧ ((Home∧Shopping) → (Promotions ≤ 2)))

Example 2.

G(((Promotions ≤ 2) In (Home ∨ Shopping)) ∨ (Promotions = 0))

6 Evaluation of the approach
6.1 Theoretical evaluation
The authors propose a theoretical evaluation that assume that all pages are static, i.e. there are no scripts
running in them, the WAUT is static, i.e. during the observation it doesn’t variate, that there is a one-
to-one mapping between an URI and a page, and that always c = 200.

The definition of a (finite) web app automaton is then given.

6

Definition 1. Given a web application with the set of all the reachable pages P, the (finite) web appli-
cation automaton, denoted AWA, is a tuple ⟨S,s0,Σ,T ⟩ where:

• S = P ∪ ⟨u0, c0, I0, L0, V0⟩ is the set of all pages;

• s0 ∈ S is the initial page ⟨u0, c0, I0, L0, V0⟩ ;

• Σ =
∪n

i=1 Li,n = |P | is the set of all the links in all the pages P;

• T ⊆ S × Σ × S is a set of all triples (⟨ui, ci, Ii, Li, Vi⟩ , li+1, ⟨ui+1, ci+1, Ii+1, Li+1, Vi+1⟩)
such that li+1 = ui+1, li+1 ∈ Li.

The authors then present a theorem that states that each trace of a session automaton is also a trace
of a web app automaton (cfr. Proposition 1 and Theorem 1 of the paper).

After this, a generalization to Kripke structures is made. The definition of a Kripke structure of a
web application and of a browsing session are given (cfr. Definition 7 and Definition 8 of the paper).
Then, a theorem that states that the browsing session Kripke structureMRRS is a “reduced abstraction”
of a web app Kripke structure MWA (cfr. Proposition 2 in the paper). This means that if a property is
violated in the browsing session Kripke structure, then it is also violated in the web application Kripke
structure, for infinite counterexamples. For finite counterexamples, only safety properties keep this
claim.

6.2 Implementation and empirical evaluation
The authors built a tool that can record a browsing session, build an internal representation of the
session, evaluate a set of properties against the internal representation, and visualize the communicating
automata. The set of properties can be split into general properties—applicable to every web app in
existence—also defined as non-functional, and specific properties also defined as functional.

The exploration was performed on a number of websites chosen by the authors. Part of the web-
sites were explored manually (by a human), and part by a crawler. The crawler performed a complete
exploration: all the pages of the web app were explored.

The properties are listed in the following:

• Non-functional:

1. Broken links and deadlocks are absent.
2. Number of links in each display (single or multi) should not exceed a certain threshold (de-

pends on size of application).
3. Number of images in each display (single or multi) should not exceed a certain threshold

(depends on size of application).
4. Number of links in each display (single or multi) is balanced.
5. Combinations of certain words/objects are absent.

• Functional

1. Home page is reachable from every other page.
2. Page X is reachable from page Y without going through a cer- tain page Z.
3. Secure pages are not reachable without authentication process.
4. In e-commerce applications, promotions of certain products are only present either on the

Home page or on Shopping pages and, for each page, the number of promotions does not
exceed two.

7

5. Privacy policy page in e-commerce applications is reachable from every page.

Many of the defined propertieswere violated. The authors note how small and largeweb applications
have a lower number of violations, while medium-sized applications have the highest.

An example of a specification where the authors found a counterexample is the following.

Example 3. G((montreal∧fire∧underg)∨((montreal∧fire)∨((montreal∧underg)∨((underg∧
fire) ∨montreal ∨ underg ∨ fire))))

The counterexample is shown in Fig. 3.

Figure 3: Counterexample found by the tool.

7 Conclusions
It is important to notice how the rapid change of web development impacts the results of this paper.
Using multiple frames is not common practice (although still used, e.g. in micro-frontends), and, more
prominently, server-rendered HTML or manually written HTML is not the standard way of serving web
applications.

Nowadays, web applications are typically Single Page Applications (SPAs). SPAs make heavy use of
JavaScript code on the frontend. For instance, routing is not happening via the browser, but by custom
JavaScript modules called front-end routers. The result is that the HTML of a web page is changed by
JavaScript and not sent by the server, which instead sends data in JSON format. While posing advantages
and disadvantages, this has now become the standard practice for non-trivial web applications.

When talking about websites, the situation is different. Requiring less dynamic content by their na-
ture, websites nowadays use either the SPA approach like web applications, the more traditional server-
rendered approach, or a mix of the two: server rendering a page at its first load, and then performing
hydration on it to transform it into an SPA. Additionally, a fourth approach is statically generating web-
sites via Static Site Generators (SSGs) (examples being Jekyll[6], Hugo[7], Astro[1]). SSGs take as input
plaintext files in formats like Markdown and, via a compilation step, output a set of HTML files that
will form the website. This happens once, at development time, and not when a web page is requested.

The approach presented in the paper is suitable to be used in static, statically generated websites
and server-rendered websites, but not in Single Page Applications and SPA-like websites.

8

References
[1] Astro. Astro. uRl: https://astro.build/.
[2] Roy T. Fielding, Mark Nottingham, and Julian Reschke. HTTP Semantics. Request for Comments

RFC 9110. NumPages: 194. Internet Engineering Task Force, June 2022. doi:10.17487/RFC9110.
uRl: https://datatracker.ietf.org/doc/rfc9110.

[3] May Haydar, Alexandre Petrenko, and Houari Sahraoui. “Formal Verification of Web Applications
Modeled by Communicating Automata”. In: Formal Techniques for Networked and Distributed Sys-
tems – FORTE 2004. Ed. by David de Frutos-Escrig and Manuel Núñez. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pp. 115–132. isbn: 978-3-540-30232-2.

[4] May Haydar et al. “A formal approach for run-time verification of web applications using scope-
extended LTL”. In: Information and Software Technology 55.12 (2013), pp. 2191–2208. issn: 0950-
5849. doi: https://doi.org/10.1016/j.infsof.2013.07.013. uRl: https:
//www.sciencedirect.com/science/article/pii/S0950584913001596.

[5] May Haydar et al. “Propositional scopes in linear temporal logic”. In: Proceedings of the 5th Interna-
tional Conference on Novelles Technologies de la Repartition (NOTERE 2005). 2005. uRl: https://
www.researchgate.net/profile/Alexandre-Petrenko/publication/
251394594_Propositional_Scopes_in_Linear_Temporal_Logic/links/
004635296cd6fab256000000/Propositional-Scopes-in-Linear-Temporal-
Logic.pdf (visited on 03/03/2025).

[6] Jekyll • Simple, blog-aware, static sites. Jekyll • Simple, blog-aware, static sites. uRl: https://
jekyllrb.com/ (visited on 03/20/2025).

[7] The world’s fastest framework for building websites. uRl: https://gohugo.io/.

9

https://astro.build/
https://doi.org/10.17487/RFC9110
https://datatracker.ietf.org/doc/rfc9110
https://doi.org/https://doi.org/10.1016/j.infsof.2013.07.013
https://www.sciencedirect.com/science/article/pii/S0950584913001596
https://www.sciencedirect.com/science/article/pii/S0950584913001596
https://www.researchgate.net/profile/Alexandre-Petrenko/publication/251394594_Propositional_Scopes_in_Linear_Temporal_Logic/links/004635296cd6fab256000000/Propositional-Scopes-in-Linear-Temporal-Logic.pdf
https://www.researchgate.net/profile/Alexandre-Petrenko/publication/251394594_Propositional_Scopes_in_Linear_Temporal_Logic/links/004635296cd6fab256000000/Propositional-Scopes-in-Linear-Temporal-Logic.pdf
https://www.researchgate.net/profile/Alexandre-Petrenko/publication/251394594_Propositional_Scopes_in_Linear_Temporal_Logic/links/004635296cd6fab256000000/Propositional-Scopes-in-Linear-Temporal-Logic.pdf
https://www.researchgate.net/profile/Alexandre-Petrenko/publication/251394594_Propositional_Scopes_in_Linear_Temporal_Logic/links/004635296cd6fab256000000/Propositional-Scopes-in-Linear-Temporal-Logic.pdf
https://www.researchgate.net/profile/Alexandre-Petrenko/publication/251394594_Propositional_Scopes_in_Linear_Temporal_Logic/links/004635296cd6fab256000000/Propositional-Scopes-in-Linear-Temporal-Logic.pdf
https://jekyllrb.com/
https://jekyllrb.com/
https://gohugo.io/

	Introduction
	Definitions
	Automata
	Single-display applications model
	Multi-display applications

	Extension of the automata model
	Extended single-display automaton
	Extended multi-display automaton

	LTL and the In operator
	Evaluation of the approach
	Theoretical evaluation
	Implementation and empirical evaluation

	Conclusions

